4. 複合型露出柱脚の復元力特性モデルの提案

Proposal of Restoring Force Characteristic Model of Composite Exposed-Type Column Bases

寺内将貴* 生島優花* 栁田佳伸* 石鍋雄一郎**

-概要-

筆者らは、鉄骨造建物の柱脚部の部材として複合型露出柱脚の開発を行ってきた。既報¹⁾では、複合 型露出柱脚の降伏曲げ耐力および弾性回転剛性の評価式を提案し、アンカーボルト降伏要素とベース プレート降伏要素の累加により算出可能であることを報告している。

本報では、複合型露出柱脚の復元力特性モデルの構築を目的とし、アンカーボルト降伏型とベース プレート降伏型の復元力特性モデルを参考にそれらの累加によりモデルの構築を試みた(図1)。構築 した復元力特性モデルを実験結果と比較し(図2)、概ね評価できていることを確認した。

ー技術的な特長ー

複合型露出柱脚は、内側に配置された弾塑性要素のアンカーボルトと弾性要素のベースプレートで アンカーボルト降伏要素を形成し、外側に配置された弾性要素のアンカーボルトと弾塑性要素のベー スプレートによりベースプレート降伏型を形成する2種類の降伏機構を有する柱脚である(図3)。

2種類の降伏機構がほぼ同程度の回転角で降伏するよう設計することで、その曲げ耐力、剛性、復元 力特性モデルはアンカーボルト降伏型(スリップ型)とベースプレート降伏型(最大点指向型)を累 加したものになる。これにより、従来の露出柱脚では履歴面積が小さくエネルギー吸収能力が乏しい スリップ型の復元力特性となるアンカーボルト降伏後の領域において、ベースプレート降伏要素によ る耐力負担、剛性の上昇がある復元力特性となる。このことから、ベースプレート降伏要素を積極的 に取り入れた本工法は繰返しの地震に対しても耐震性の高い柱脚となっている(図 4)。

1)新井佑一郎, 栁田佳伸, 寺内将貴, 石鍋雄一郎: 複合型露出柱脚の設計用曲げ耐力式の提案, 第15回日本地震工学シン ポジウム論文集, pp.2439-2448, 2018.11

※本報の一部は、日本建築学会大会学術講演会梗概集(2022.09 pp.915-918)にて発表済みの内容である。

*技術研究所 構造研究部 建築構造研究室 **日本大学

複合型露出柱脚の復元力特性モデルの提案

Proposal of Restoring Force Characteristic Model of Composite Exposed-Type Column Bases

○寺内将貴*	生島優花*	栁田佳伸*	石鍋雄一郎**
Masaki TERAUCHI	Yuka IKUSHIMA	Yoshinobu YANAGITA	Yuichiro ISHINABE

ABSTRACT The composite-type exposed column base is one type of exposed column base in steel frame building. In this paper, the restoring force characteristic model of the compound exposed type column base is constructed and evaluated. The restoring force characteristic model was evaluated with a model that combined the anchor bolt yield type and the base plate yield type, and the experimental results could be reproduced.

Keywords:露出型柱脚, ベースプレート降伏型, アンカーボルト降伏型, 復元力特性モデル Exposed-type column bases, Base plate yield type, Anchor bolt yield type, Restoring force characteristic model

1. はじめに

複合型露出柱脚は、鉄骨造で用いられる露出柱 脚の一形式であり、アンカーボルト降伏型¹⁾と ベースプレート降伏型^{2),3)}の要素を組み合わせ た2種類の降伏機構を有する柱脚である。

これらは、独自の凸型のベースプレート形状と アンカーボルトの配置により形成され、内側に配 置されたアンカーボルトと外側に配置されたベ ースプレート(図1)がほぼ同程度の回転角で降 伏するよう設計することで、その復元力特性がス リップ型と最大点指向型の累加となることは既 報⁴⁾の通りである(図2)。しかし、厳密にはど ちらかの先行降伏が考えられる。

そこで本報では、動的解析に組み込むための設 計用の復元力特性モデルの構築を目的とし、既報 の実験結果から得られた骨格曲線により初期剛 性や除荷剛性を求め考察を行う。

2. 複合型露出柱脚の復元力特性モデル

アンカーボルト降伏型の復元力特性がスリッ プ型¹⁾(図 2(a))となることは広く知られてい る。一方ベースプレート降伏型は、既往の研究²⁾

*技術研究所 構造研究部 建築構造研究室 **日本大学短期大学部 准教授

により最大点指向型の復元力特性モデル(図2(b)) となることがわかっている。文献⁵⁾によれば、 弾性剛性 ${}_{b}K_{r}$ で降伏耐力 ${}_{b}M_{y}$ に達した後、2次剛 性 ${}_{b}K_{r2}$ (=0.5 ${}_{b}K_{r}$)で耐力が上昇し、降伏耐力の 1.5 倍程度から、塑性剛性 ${}_{b}K_{s}$ で最大耐力に到達 する。その後の除荷では、耐力の正負が反転する まで弾性剛性を保持し、正負の反転後、半サイク ル前の最大点を指向する。

複合型露出柱脚の復元力特性は、スリップ型と 最大点指向型の復元力特性を単純累加すること で得られる⁴⁾(図2(c))。アンカーボルト、ベー スプレートそれぞれの弾性回転剛性を累加した 初期剛性(弾性剛性)*cKr*で降伏耐力まで耐力が 上昇し、その後、内アンカーボルトまたは外ベー スプレートが降伏、もしくはその両方が降伏した 2次剛性*cKu*を以ってさらに耐力が上昇し、内ア ンカーボルト、外ベースプレートともに降伏した 3 次剛性(塑性剛性)*cKs*となり最大耐力に達す ると考えられる。

3. 実験結果から得られた骨格曲線

既報^{6)~9)}の実験結果から、脚部モーメント *M*·脚部回転角 θ 関係図より得られる骨格曲線を 図 3~図 5 に示す。試験体名は、「内ベースプレ ート板厚(mm)-外ベースプレート板厚(mm)-軸力 (kN)」とする。試験体は主に鋼製基礎を用いてお り、40-16-645c 試験体と 60-32-0c 試験体はコン クリート基礎となっている。また、32-16-0R 試 験体はリブ付きの試験体である。なお、試験体詳 細については既報^{6)~9)}を参照されたい。

軸力なしの試験体(図3)は原点からの剛性を 初期剛性とし、軸力ありの試験体(図4)は軸力 による付加曲げモーメント M_n からの剛性を初期 剛性と考える。図5のように、軸力による付加曲 げモーメント M_n が確認できない試験体は、計算 で求めた M_n から初期剛性の最大点を結んだ線を 初期剛性としている。2次剛性は初期剛性の骨格 曲線上の最大点を起点とし、その剛性が変化した と考えられる点を、同様に3次剛性は2次剛性の

図 4 40-16-645c 試験体 M-θ関係図

※1:基礎コンクリート部が側柱を想定し「型となっているため、 正負で骨格曲線に違いが発生している。

- 2 -

骨格曲線上の最大点を起点とし、その剛性が変化 したと考えられる点を結び算出している。

既報⁸⁾の設計式により算出した各試験体の弾 性剛性を表1に、実験の骨格曲線から求めた剛性 を表2に示す。

複合型露出柱脚では、内アンカーボルトと外ベ ースプレートがほぼ同程度の回転角で降伏する よう設計しているが、実際には内アンカーボルト または外ベースプレートの先行降伏が考えられ る。そこで、計算値における弾性剛性 *abKr*に対 する内アンカーボルトおよび外ベースプレート 単体の剛性 *aKr、bKr*および *bKr2*の比率を算出し、 骨格曲線から求めた *cKr*に対する *cKu*および *cKs* の比率を比較し、2 次剛性および 3 次剛性時の各 部材の降伏状況を確認する。

骨格曲線から初期剛性を算出した結果、 40-16-645c 試験体と 60-32-0c 試験体以外で計算 値と概ね一致する結果となった。また、初期剛性 *cKr*と2次剛性 *cKu*の比率は 0.23~0.60 となり、 比率 *cKulcKr*が *bKt/abKr*を上回る試験体では、ア ンカーボルトが先行降伏していると考えられる。 一方、*cKulcKr*が 0.26~0.28の試験体はほぼ同時 に降伏していると考えられる。

また、3 次剛性は初期剛性の1割以下となった ことからアンカーボルト、ベースプレートがとも に降伏している塑性剛性と考えられる。このこと から、2 次剛性は内アンカーボルトの塑性剛性 *aKs*と外ベースプレートの2 次剛性 *bKr*2の累加、 3 次剛性では内アンカーボルト、外ベースプレー トの塑性剛性(*aKs*+*bKs*)で評価可能であることを 確認した。

4. 除荷剛性の算出と実験との比較

アンカーボルト降伏型の復元力特性モデル^{1)な} ^どやベースプレート降伏型の復元力特性モデル⁵⁾ ^{など}では、除荷剛性は初期剛性と等しいものと定 義している。このことから、既報^{6)~9)}の実験か ら得られた骨格曲線(図6)を用いて除荷剛性を 算出し、初期剛性との比較を行う。除荷剛性は、 除荷時に回転角が減少し始めた点(図6青点)を 起点とし、直線的要素が終わったと思われる点

試験体名	弾性剛性 _{ab} K _r [※] (×10 ³ kN・m/rad)	内 AB 弾性剛性 _a K _r (×10 ³ kN・m/rad)	外 BPL 弾性剛性 _b K _r (×10 ³ kN・m/rad)	$_{a}K_{r}/_{ab}K_{r}$	$_{b}K_{r}/_{ab}K_{r}$	外 BPL2 次剛性 _b K _{r2} (×10 ³ kN・m/rad)	$_{b}K_{r2}/_{ab}K_{r}$
32-16-0 32-16-0R 32-16-645	22. 8	13. 4	9. 4	0. 59	0. 41	4.7	0. 21
40-16-645c	21.0	11.7	9.4	0.55	0.45	4.7	0. 22
32-9-645	18.7	13.4	5.3	0. 72	0. 28	2.6	0.14
60-32-0c	161.0	102.3	58.7	0.64	0.36	29.3	0. 18

表1 弾性剛性の計算値と剛性比率

 $\underset{ab}{K} K_r = {}_aK_r + {}_bK_r$

表2 骨格曲線より算出した各剛性と初期剛性との比率

試験体名	初期剛性 cKr (×10 ³ kN・m/rad)		2 次剛性 cKu ($\times 10^3 \mathrm{kN} \cdot \mathrm{m/rad}$	3 次剛性 cKs (×10 ³ kN・m/rad)		
	Ē	負	Ē	負	Ē	負	
32-16-0 ⁶⁾	25. 0	25. 3	9. 3	6.6	1.3	1.2	
剛性比率 (/cKr)	-	-	0.37	0. 26	0. 05	0. 05	
32-16-0R ⁶⁾	25. 8	24. 9	7. 3	5.6	1.4	1.5	
剛性比率 (/cKr)	-	-	0. 28	0. 23	0.06	0.06	
32-16-6457)	22. 2	28.9	5.9	8. 1	1.4	2. 1	
剛性比率 (/ _c K _r)	-	-	0.26	0. 28	0.06	0. 07	
40-16-645c ⁸⁾	43. 5	46.0	17.6	15. 7	2.8	2. 9	
剛性比率 (/cKr)	-	-	0. 40	0. 34	0. 07	0.06	
32-9-645 ⁶⁾	18. 4	20. 5	10. 3	5.8	1.1	1.0	
剛性比率 (/cKr)	-	-	0.56	0. 28	0. 05	0. 05	
60-32-0c ⁹⁾	247.0	418.2	148. 7	98.5	74.2	30. 2	
剛性比率 (/ _c K _r)	-	-	0.60	0. 23	0. 30	0. 07	

※R はリブ付き柱, c はコンクリート基礎を示している

(図6赤点)の2点間を結んだ線の傾きとした。

算出した除荷剛性 *cKe* と初期剛性 *cKr*を表3に 示す。骨格曲線から求めた除荷剛性 *cKe*は、正負 方向で近い値となり、一部乖離する結果もあるが、 文献1)、5) などと同様に初期剛性 *cKr* と概ね 一致する結果となった。

以上より、本工法においてもアンカーボルト降 伏型やベースプレート降伏型の復元力特性モデ ルと同様に、除荷剛性 *cKe*=初期剛性 *cKr*でモデ ルを構築することとする。

また、最大荷重から除荷剛性 *cKe*で脚部曲げモ ーメント0kN・mまで除荷されていないが、こ れはアンカーボルトとベースプレートの除荷時 の残留変位が異なることによる影響だと考えら れる。

5. 復元力特性モデルの構築

算出した初期剛性 cKr、降伏後の 2 次剛性 cKu、 3 次剛性 cKs、除荷剛性 cKe(=cKr)、および最大点 指向型の特性である疑弾性剛性 Kgを用いて、復 元力特性モデルの構築を試みる。3 次剛性は実験 結果から初期剛性との比で算出した数値を用い た。作図した復元力特性モデルを図7 に示す。疑 弾性剛性 Kgは、図8 のようなベースプレート降 伏要素単体の復元力特性モデルを構築し、脚部回 転角に応じた最大点を指向する疑弾性剛性を求 め、図7 に反映させている。

負側の載荷では、ベースプレート降伏要素単体 の剛性 ${}_{b}K_{r}$ で dからアンカーボルトに引張力が作 用する eまで耐力が上昇し、eから ${}_{c}K_{r}$ で降伏耐 力 ${}_{ab}M_{y}$ (f)に到達する。

表3 除荷剛性と初期剛性の比率

試験体名	除荷剛性 _c K _e (×10 ³ kN・		初期剛性 <i>cKr</i> (×10 ³ kN・		cKr∕cKe	
	m/rad)		m/rad)			
	+	—	+	-	+	-
32-16-0	29.9	25.2	25.0	25. 2	0.84	1.00
32-16-0R	29.8	39.8	25.8	24. 9	0.87	0.62
32-16-645	28.8	27.2	22. 2	28.9	0.77	1.06
40-16-645c	49.5	45.7	43.5	46.0	0.88	1.01
32-9-645	33.0	32.4	18.4	20.5	0.56	0.63
60-32-0c	574.6	404.8	247.0	418.2	0.43	1.03

脚部回転角 θ (rad)

図7 復元力特性モデル

- 4 -

2 サイクル目以降は、最大荷重から除荷された のち、アンカーボルトに引張が作用する回転角ま で、ベースプレートの疑弾性剛性 Kgを以って耐 力が上昇する。つまり、2 サイクル目以降の同一 回転角では同じ履歴を描くことになる。これは、 実験結果(図9)からも確認できる。

降伏耐力 abM_y (f)以降は、脚部回転角が進むと2次剛性 cK_u で荷重 abM_u まで上昇する。

6.実験値と復元力特性モデルの比較

図7で定義した復元力特性モデルをもとに、実験との比較を行う。なお、復元力特性モデルのサイクルごとの脚部回転角は実験の脚部回転角に 合わせ、降伏曲げ耐力 *abMy*は既報⁸⁾の計算式から算出した計算値を用いた。

比較は、軸力なしとした 32-16-0 試験体(図 10) と 32-16-0R 試験体(図 11)、60-32-0c 試験 体(図 12)を対象とした。なお、60-32-0c 試験 体については、初期剛性が計算値と実験値で乖離 する結果となったため、本報では実験値の正負の 平均値を復元力特性モデルの初期剛性として設 定しモデル化を行った。

図 10~図 12 より、降伏点や降伏後の剛性が変 化する 2 次剛性および、2 サイクル目以降のアン カーボルトに伸びが発生した領域など実験結果 と概ね一致している。このことから、提案した復 元力特性モデルにより実験結果を再現できてい ると考える。

詳細に見ると、除荷時に最大点から除荷剛性ま での間に回転角にほとんど変化が生じず脚部モ ーメントが低下する領域(①)や、2次剛性から 3次剛性に変化する領域をベースプレート降伏 要素の2次剛性の範囲(脚部回転角 θ=1/100rad) までとしたが、それ以降の回転角でも脚部モーメ ントが上昇している(②)ことが実験値から確認 できる。ただし、その評価には設計式が複雑化す ることが考えられるため、アンカーボルト降伏要 素とベースプレート降伏要素の累加により評価 可能である本モデルを設計用の復元力特性モデ

図 11 32-16-OR 試験体 M-θ関係図

図 12 60-32-0c 試験体 M-θ 関係図

7.まとめ

本報で得られた知見を以下にまとめる。

骨格曲線から得られた剛性(実験値)と計算値 を比較し、初期剛性=除荷剛性で検討を進め、復 元力特性モデルを構築した。その結果、降伏点は 概ね一致し、降伏点以降の2次剛性は、内アンカ ーボルトの塑性剛性と外ベースプレートの2次 剛性の累加で評価可能であった。

その結果、提案した復元力特性モデルにて実験 結果を、概ね再現できたと考える。

今後は、この復元力特性モデルを用いて1サイ クル目と2サイクル目以降のエネルギー吸収性 能の比較などを実施していく予定である。

【参考文献】

- 1)秋山宏,鉄骨柱脚の耐震設計,技法堂出版, 1985.3
- 2)柳田佳伸,半貫敏夫,秋山宏:露出型鉄骨柱 脚の履歴特性に関する実験的研究,構造工学 論文集,Vol.51B,pp.303-310,2005.4
- 田中尚,高梨晃一,大井謙一,前田祥三:鋼
 構造露出柱脚部の弾塑性挙動に関する研究
 その1柱脚模型の曲げ実験,日本建築学会大
 会学術講演梗概集,pp.1331-1332, 1980.8

- 4)寺内将貴,柳田佳伸,新井佑一郎,石鍋雄一郎:複合型露出柱脚の特性に関する実験的研究,日本建築学会関東支部研究報告集, pp.301-304,2016.3
- ・柳田佳伸,半貫敏夫,秋山宏:ベースプレー ト降伏先行型柱脚のもつ鋼構造物の損傷分 布,鋼構造年次論文報告集,pp.197-200, 2005.11
- 6)寺内将貴,柳田佳伸,新井佑一郎,石鍋雄一郎:2種の降伏機構を有する複合型露出柱脚の開発,青木あすなろ建設技術研究所報 Vol.2, p.3, 2017.4
- (7) 寺内将貴,柳田佳伸,新井佑一郎,石鍋雄一郎:複合型露出柱脚の耐力・回転剛性の累加 要素に関する実験的研究,日本建築学会大会 学術講演梗概集,pp.1331-1332,2018.9
- 柳田佳伸,寺内将貴,新井佑一郎,石鍋雄一郎:基礎コンクリートを配した複合型露出柱脚の性能確認実験,コンクリート工学年次論 文集, Vol.41, No.2,pp.1483-1488, 2019.6
- 9)新井佑一郎,柳田佳伸,寺内将貴,石鍋雄一郎:中低層建物の柱脚部を想定した複合型露 出柱脚の実験に関する報告,青木あすなろ建 設技術研究所報 Vol.3, p.2, 2018.4

- 6 -