# 8. 橋軸直角方向に摩擦ダンパーを設置した既設橋梁の制震化効果の検討

Study of Seismic Control Effect of Existing Bridge Installed Friction Damper at the Direction Perpendicular to Bridge Axis

山﨑 彬\* 波田雅也\* 松原拓朗\*\* 山本一貴\*\*

## -概要-

筆者らは、"ダイス・ロッド式摩擦ダンパー(以下、摩擦ダンパー)"を既設橋梁の支承部に設置し て耐震性の向上を図る耐震補強工法を提案している(図1)。本論文では、本工法による制震化の効果 の確認を目的として、実橋梁の橋軸直角方向を対象に時刻歴応答解析を実施した(図2)。解析の結果、 レベル2地震動に対する下部構造の最大応答値を大幅に低減できることが確認された(表1、図3)。

# ー技術的な特長ー

摩擦ダンパーは、ダイス(環)とロッド(芯棒)の摩擦抵抗を利用し、完全剛塑性に近い履歴特性 を有する制震デバイスである。本工法では、摩擦ダンパーの剛塑性型履歴特性を活かし、レベル1地 震動に対しては、摩擦ダンパーが下部構造頂部に対する上部構造の相対変位を拘束するサイドブロッ クの代替として機能し、レベル2地震動に対しては、摩擦ダンパーが滑動することで上部構造の慣性 力を頭打ちにし、地震エネルギーを吸収することにより下部構造の応答低減を図る。



※本報は、首都高速道路(株)と青木あすなろ建設(株)の共同研究「既設橋梁の耐震性向上技術に関する研究」に関する研究成果の一部であり、日本地震工学会第14回年次大会梗概集(P2-29, 2019.9)にて発表済みである。

\*技術研究所 構造研究部 土木構造研究室 \*\*首都高速道路(株)

# 橋軸直角方向に摩擦ダンパーを設置した既設橋梁の制震化効果の検討 Study of Seismic Control Effect of Existing Bridge Installed Friction Damper at the Direction Perpendicular to Bridge Axis 〇山崎 彬\* 波田 雅也\* 松原 拓朗\*\* 山本 一貴\*\* Akira YAMASAKI Masaya HADA Takuro MATSUBARA Kazuki YAMAMOTO

ABSTRACT The authors have proposed a seismic retrofitting method to reduce the response of the substructure to level-2 earthquake motion by installing a "friction damper" at the bearing in the direction perpendicular to the bridge axis of the existing bridge. In this paper, time history response analysis was performed for the direction perpendicular to the bridge axis of an actual bridge with the purpose of confirming the effect of the seismic control by this method. As a result of the analysis, it was confirmed that the maximum response value of the substructure to a level-2 earthquake could be significantly reduced.

Keywords: ダイス・ロッド式摩擦ダンパー、道路橋、耐震補強、時刻歴応答解析 Friction Dampers、 Die-and-Rod、 Road Bridges、 Seismic Retrofit、 Time History Response Analysis

# 1. はじめに

筆者らは、既設橋梁の橋軸直角方向を対象とし て、支承部に「摩擦ダンパー」を設置することで、 レベル2地震動に対し下部構造の応答低減を図る 耐震補強工法を提案している(図 1)12)。対象とす る摩擦ダンパーは、ダイス(環)とロッド(芯棒)の摩 擦抵抗を利用し、完全剛塑性に近い履歴特性を有 する制震デバイスである(図 2)<sup>3)4)</sup>。本工法では、 摩擦ダンパーの剛塑性型履歴特性を活かし、レベ ル1地震動(L1地震動)に対しては、摩擦ダンパー が下部構造頂部に対する上部構造の相対変位を 拘束するサイドブロックの代替として機能し、レ ベル2地震動(L2地震動)に対しては、摩擦ダンパ ーが滑動することで上部構造の慣性力を頭打ち にし、地震エネルギーを吸収することにより下部 構造の応答低減を図る。本論文では、本工法によ る制震化の効果の確認を目的として、実橋梁の橋 軸直角方向を対象に時刻歴応答解析を実施した。



図1 摩擦ダンパーを用いた橋梁耐震補強工法



\*技術研究所 構造研究部 土木構造研究室

<sup>\*\*</sup>首都高速道路(株)

<sup>※</sup>本報は、首都高速道路(株)と青木あすなろ建設(株)の共同研究「既設橋梁の耐震性向上技術に関する 研究」に関する研究成果の一部で、日本地震工学会第14回年次大会概要集(2019.09.P2-29)にて発 表した内容である。

#### 2. 工法の概要

## 2.1 検討対象

平成8年(兵庫県南部地震)以降は、重要度の高 い道路橋(B 種の橋)の耐震性能の目標として、L1 地震動に対して橋としての健全性を損なわない とともに、L2 地震動に対して落橋・倒壊を防止し、 かつ地震による損傷を限定的なものに留めて橋 としての機能が速やかに回復できる性能を目標 としている 5677。これは既設橋梁を耐震補強する 場合も同様である。既設橋梁では、主たる塑性化 を橋脚柱基部とするため、橋脚柱に鋼板巻き立て 補強等を施し、また、橋脚の保有水平耐力を上回 る耐力を有する支承に交換する等の対策が実施 されている。しかし、地表面以下に埋設されてい る橋脚柱基部が塑性化した場合、その損傷程度を 把握することや補修は容易ではなく、地震後の速 やかな点検や補修といった復旧性が十分に確保 されないおそれがある。また、L2 地震動を設計に 考慮していない既設橋梁では、より点検や補修が 困難である橋脚底版や橋脚基礎に損傷が移行す ることも考えられる。さらに、一般的に支承はひ とつの橋脚上に複数個設置するが、固定支承を用 いた場合には、特定の支承に荷重が集中し破壊さ れる各個撃破が生じることが懸念される。特に橋 軸直角方向は、温度変化による支承の変位がほと んど生じないことから、多くの橋梁で支承条件を 固定としており、橋脚が耐力の大きいラーメン式 や壁式の場合、支承や基礎に損傷が生じることが 考えられる。

既設橋梁の耐震性を向上させる補強策として、 橋軸方向は、支承交換による免震化や地震時水平 力分散構造への変更、種々の制震デバイスを用い る事例が増加している<sup>899</sup>。一方、橋軸直角方向は、 速度依存型の粘性減衰機構では、L1 地震動に対し ても支承変位が生じることから、橋軸直角方向の 変位に追随可能なジョイントへの交換が必要と なり、制震デバイスを用いた耐震補強が普及して いない。

以上を踏まえ、本検討では、既設橋梁の橋軸直 角方向を対象とする。

## 2.2 制震化効果

本検討では、橋軸直角方向の制震化に用いる制 震デバイスとして摩擦ダンパーを用いる。摩擦ダ ンパーは、完全剛塑性に近い履歴特性を活かし、 L1 地震動に対しては、支承変位を拘束する固定 部材としてのサイドブロックの代替として機能 させ、L2 地震動に対しては摩擦ダンパーが滑動 し、ダンパー摩擦荷重を上限として上部構造の慣 性力を頭打ちにし、地震エネルギーを吸収する。 さらに、複数の摩擦ダンパーを設置した場合でも、 摩擦ダンパーが滑動した後の摩擦荷重が一定で あり、各個撃破を防止することができる。

ゴム支承が橋軸直角方向に可動し サイドブロックを撤去し 摩擦ダンパーが滑動し、上部 ないようサイドブロックで固定 構造の慣性力が頭打ちとなる 摩擦ダンパーを設置 Ø and and Ø and and and ト部 構造 支承部 橋脚柱基部が 橋脚柱基部の損傷 下部 大きく損 構造 (塑性化)を低減!! 🛑 L1 地震動 📫 年 L1 地震動 📫 L2 地震動 L2 地震動 (a) 補強前 (b) 補強後 (ダンパー有り) 図3 本工法による制震化効果の概念図

本工法による制震化の概念図を図3に示す。ま

- 2 -

ず、図3(a)の補強前は、橋脚柱の脆性的な破壊 を防止するための鋼板巻き立て補強等が施工さ れており、支承変位がサイドブロックによって拘 束されている。L1 地震動に対する橋の健全性は 確保されるものの、L2 地震動に対しては橋脚柱 基部または基礎部が塑性化する。本工法は、図3 (b)のように橋軸直角方向のサイドブロックを撤 去し、摩擦ダンパーを設置する。摩擦ダンパーを 設置した補強後は、L1 地震動に対して橋の健全 性を確保しつつ、L2 地震動に対して摩擦ダンパ ーが滑動することで上部構造の慣性力を頭打ち にし、地震エネルギーを吸収することで、橋脚柱 基部または基礎部の応答が低減される。

なお、摩擦ダンパーは弾性復元力を有さないた め、地震後に残留変位が生じるが、段差や目開き が生じないことから、車両の通行には支障がない ため、許容できるものとしている。ただし、残留 変位をできる限り少なくするため、本検討では、 弾性復元力を有するゴム支承と摩擦ダンパーを 並列に用いることを前提とした。

# 3. 制震化効果の確認

本章では、摩擦ダンパーを用いた制震化の効果 (Takeda 上部構造: ゴム支承:線形パネ要素 P 線形はり要素 摩擦ダンパー:

を確認するため、実在する橋梁の橋軸直角方向を 対象に実施した時刻歴応答解析の結果を示す。

# 3.1 解析諸元

## (a) 対象橋梁

対象橋梁は、実在する 3 径間連続のプレストレ スト・コンクリート床版橋(P102~P105 橋脚)に 設定した。下部構造は、3.0m 角の正方形断面の 単柱 RC 橋脚であり、鋼板巻き立て補強が施され ている。橋軸直角方向の現況の支承条件は、ゴム 支承の両側にサイドブロックが設置され、支承変 位が拘束された固定支承となっている。なお、橋 軸方向の支承条件はゴム支承による地震時水平 力分散構造 ©である。

## (b)解析モデル

解析モデルを図4に示す。構造部材は、上部構 造を線形はり要素、ゴム支承を線形ばね要素、摩 擦ダンパーを非線形ばね要素、下部構造横梁を線 形はり要素、下部構造柱を非線形はり要素でそれ ぞれモデル化した。基礎については、基礎杭を鉛 直・水平・回転方向の節点ばね要素でモデル化し た。下部構造柱の非線形特性は M- φ(曲げモー メントー曲率)関係でモデル化し、復元力特性には 最大点指向剛性低下型のバイリニアモデル (Takeda モデル)を用いた。下部構造柱の一般部お



よび基部の断面特性を表1に示す。下部構造柱の バイリニアモデルの折れ点は、降伏曲げモーメン ト My が終局水平耐力時の曲げモーメントに等し いものとし、初降伏点( φy0、My0)を通る割線剛 性 Ky0 と My の交点を降伏曲率 ov とした <sup>7)</sup>。下 部構造柱は、鋼板巻き立て補強を施し、せん断耐 力を増大させて曲げ降伏先行型とすることで、靭 性能(後述の表8に記載する許容曲率)を改善して いる。なお、対象橋梁の下部構造柱は正方形断面 であるが、橋軸方向と橋軸直角方向で配筋が多少 異なるため、橋軸直角方向の M- o 関係は、橋軸 方向に比べて降伏曲げモーメントが 10%程度小 さく、降伏曲率が 2%程度大きい。ゴム支承の弾 性剛性 Ksp は 1 橋脚当たり 30MN/m とした(表 2)。摩擦ダンパーの非線形特性は P-δ (水平力 -水平変位)関係でモデル化し、復元力特性には完 全弾塑性型のバイリニアモデルを用いた。各部材 の減衰特性はレーリー型とし、各構造要素の減衰 定数には表3に示す値を用いた7。ただし、摩擦 ダンパーは履歴減衰のみ考慮した。

|       |     | $M_{y0}$ | $K_{y0}$ | $\phi_{y0}$          | $M_y$ | $\phi_y$             |  |
|-------|-----|----------|----------|----------------------|-------|----------------------|--|
|       |     | MN•m     | MN/m     | $1/m \times 10^{-3}$ | MN•m  | 1/m×10 <sup>-3</sup> |  |
| D102  | 一般部 | 142.7    | 0.15     | 0.97                 | 205.0 | 1.39                 |  |
| P 102 | 基部  | 106.1    | 0.12     | 0.89                 | 155.8 | 1.31                 |  |
| P103  | 一般部 | 147.6    | 0.15     | 0.96                 | 211.8 | 1.30                 |  |
|       | 基部  | 105.9    | 0.12     | 0.88                 | 155.6 | 1.28                 |  |
| P104  | 一般部 | 130.8    | 0.14     | 0.95                 | 184.9 | 1.34                 |  |
|       | 基部  | 96.7     | 0.11     | 0.87                 | 138.3 | 1.22                 |  |
| D105  | 一般部 | 146.2    | 0.15     | 0.96                 | 209.2 | 1.38                 |  |
| r 105 | 基部  | 112.4    | 0.13     | 0.89                 | 163.8 | 1.30                 |  |
|       |     |          |          |                      |       |                      |  |

表1 下部構造の断面特性

# (c) 解析手法

解析方法は、Newmark β 法(β=0.25)による時刻歴 応答解析とし、積分時間間隔は、1/500秒とした。

## 3.2 ダンパー摩擦荷重の設定

ダンパー滑動時震度 kの概念図を図5に示す。 ダンパー滑動時震度 kは、式(1)で示すように、各 橋脚の上部構造分担重量 6W3 に対するダンパー 摩擦荷重 Fdp の比率とする。本検討では、L1 地震 動(5%減衰時の最大応答加速度 300cm/sec2 程度) に対して摩擦ダンパーを滑動させず、L2 地震動 に対して摩擦ダンパーを滑動させて橋脚柱基部 の応答塑性率を低減させる。そのため、橋脚1基 当たりのダンパー摩擦荷重 Fdp は、上部構造重量 W<sub>3</sub>の3割以上(k≥0.3)かつ橋脚柱基部が初降伏<sup>6)</sup> 曲げモーメント Myo に至る前にダンパーが滑動し 始める範囲で、表4中に示す値に設定した。

$$F_{dp} = W_3 \cdot k \tag{1}$$

ただし、ダンパー滑動時震度kの条件は、0.30 ≦  $k < M_{v0} / (H_1 \cdot W_1 + H_2 \cdot W_2 + H_3 \cdot W_3)$ の範囲とす

| 表 2 :        | ゴム支承                  | の諸   | 元                 |   |   |
|--------------|-----------------------|------|-------------------|---|---|
| 項            | E                     |      |                   |   |   |
| 材            | 質                     | 天然   | ゴム                | _ | 椲 |
| せん断弾         | 饉ヒ係数                  | 1.2  | N/mm <sup>2</sup> |   | 咅 |
| ゴム           | たて                    | 1250 | mm                |   | Ŀ |
| 断面寸法         | よこ                    | 1250 | mm                |   | 椲 |
| ゴム           | 厚                     | 25   | mm                | - | = |
| ゴム           | 層数                    | 5    | -                 |   | ţ |
| 総ゴム          | 、厚さ                   | 125  | mm                | _ | 盾 |
| π/ 山上 /万 米/- | <i>S</i> <sub>1</sub> | 12.5 | -                 |   | 5 |
| 形状床奴         | S 2                   | 10   | -                 |   | ľ |
| 1橋脚当り        | しの基数                  | 2    | 基                 | _ | ī |
| 1橋脚当りの       | )弾性剛性                 | 30.0 | MN/m              | • | 樟 |

#### 表3 各構造要素の 減衰定数

| 構造<br>部材       | 減衰<br>定数 | 備考                      |  |  |  |  |
|----------------|----------|-------------------------|--|--|--|--|
| 上部<br>構造       | 0.03     | 線形部材<br>コンクリート構造        |  |  |  |  |
| ゴム<br>支承       | 0.03     | 線形部材<br>弾性支承            |  |  |  |  |
| 摩擦<br>ダン<br>パー | -        | 非線形部材<br>履歴減衰のみ考<br>慮する |  |  |  |  |
| 下部<br>構造       | 0.02     | 非線形部材<br>コンクリート構造       |  |  |  |  |

| $W_2 \cdot k$ |                                        |      |
|---------------|----------------------------------------|------|
|               | •••••••••••••••••••••••••••••••••••••• | 表4   |
| $W_1 \cdot k$ |                                        |      |
| H H           | 基部、                                    | 荷重作用 |



 $W_3$ .

V  $H_2$ 

 $H_3$ 

図:鋼板巻き立て補強部分 ®:水平力作用位置

図5 ダンパー滑動時震度 kの概念図<sup>1)</sup>

| 表 4 橋脚一基当たりのダンパー摩擦荷重 $F_{dp}$ の設定                                                                                                                                                                                                                                                                                                                                                                       |       |          |      |       |       |      |       |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|------|-------|-------|------|-------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                         | 橋脚    |          |      | P102  | P103  | P104 | P105  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                         | 上部構造  | $H_3$    | m    | 17.4  | 17.6  | 17.8 | 18.1  |  |  |  |  |
| 何里作用<br>位置                                                                                                                                                                                                                                                                                                                                                                                              | 梁     | $H_2$    | m    | 14.3  | 14.5  | 14.7 | 15.0  |  |  |  |  |
| 回回                                                                                                                                                                                                                                                                                                                                                                                                      | 柱     | $H_1$    | m    | 5.8   | 5.9   | 6.0  | 6.1   |  |  |  |  |
| 荷重作用<br>位置     上部構造     H3     m     17.4     17.6       梁     H2     m     14.3     14.5       柱     H1     m     5.8     5.9       重量     上部構造     W3     MN     10.2     11.5       重量     上部構造     W3     MN     10.2     11.5       重量     上部構造     W3     MN     10.2     11.5       重量     基部の初降伏<br>曲/fモーメント     My0     MN・m     106.1     105.9       ダンパー滑動時震度     k     -     0.34     0.31 | 上部構造  | $W_3$    | MN   | 10.2  | 11.5  | 10.2 | 10.5  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                         | 梁     | $W_2$    | MN   | 2.5   | 2.6   | 2.6  | 2.6   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                         | 3.2   | 3.2      | 3.3  |       |       |      |       |  |  |  |  |
| 基部の初降伏<br>曲げモーメント                                                                                                                                                                                                                                                                                                                                                                                       |       | $M_{y0}$ | MN•m | 106.1 | 105.9 | 96.7 | 112.4 |  |  |  |  |
| ダンパー滑                                                                                                                                                                                                                                                                                                                                                                                                   | 骨動時震度 | k        | -    | 0.34  | 0.31  | 0.30 | 0.34  |  |  |  |  |
| ダンパー摩擦荷重                                                                                                                                                                                                                                                                                                                                                                                                |       | $F_{dn}$ | MN   | 3.5   | 3.6   | 3.1  | 3.6   |  |  |  |  |

る。なお、ダンパーの弾性剛性  $K_{dp}$ は、滑出し変  $\dot{0}$   $\delta$  y を 1.0mm として設定した。

# 3.3 解析 Case と入力地震動

## (a) 解析 Case

解析 Case を表5 に示す。本検討では、橋軸直角 方向にサイドブロックを設置して固定支承とし た現況の状態を Case1(現況)、サイドブロックを撤 去しゴム支承のみとした状態を Case2(ダンパー 無し)、さらに摩擦ダンパーを設置した状態を Case3(ダンパー有り)とした。Case1 のサイドブロ ックの弾性剛性は、前述のダンパーと同じ値とし た。Case3 の1 次固有周期は、摩擦ダンパーが滑 動しない条件の場合であるため、Case1 と同値に なっている。

# (b)入力地震動

入力地震動特性を表6および図6に示す。入力 地震動は、III種地盤の地震動<sup>7)</sup>とし、橋軸直角方 向に入力した。本論文では、L1 地震動(L1-III)1 波 と、L2 地震動 6 波のうち Case3(ダンパー有り)の 基部曲率がとくに大きかった波形をプレート境 界型のタイプ I および内陸直下型のタイプ II から 各々1 波(I-III-3、II-III-3)、合計 3 波の解析結果に ついて示す。

## 3.4 L1 地震動時の解析結果

L1 地震動(L1-III)の解析結果として、各橋脚の 最大応答曲率分布を図7に、各橋脚支承部の最大 応答値及び残留変位一覧を表7に示す。図中には、 比較のため降伏曲率 φy も破線で示している。表 7 中の最大反力は、摩擦ダンパーとゴム支承の水 平反力の合計値である。まず、図7より、いずれ の解析 Case でも各橋脚の応答曲率が降伏曲率よ り小さく、弾性域に留まっていることがわかる。 つぎに表7 より、Case2(ダンパー無し)では最大 80mm 程度の支承変位(桁ずれ)が生じており、遊



|      |                   | 最大反力(M | N)     |       | 最大変位(m | n)     | 残留変位(mm) |        |        |  |  |  |  |  |
|------|-------------------|--------|--------|-------|--------|--------|----------|--------|--------|--|--|--|--|--|
|      | Case1 Case2 Case3 |        | Case3  | Case1 | Case2  | Case3  | Case2    | Case3  | Case4  |  |  |  |  |  |
|      | 現況                | ダンパー無し | ダンパー有り | 現況    | ダンパー無し | ダンパー有り | 現況       | ダンパー無し | ダンパー有り |  |  |  |  |  |
| P102 | 2.9               | 2.3    | 2.9    | 0.8   | 77.1   | 0.8    | 0.0      | 0.0    | 0.0    |  |  |  |  |  |
| P103 | 3.3               | 2.4    | 3.3    | 0.9   | 79.1   | 0.9    | 0.0      | 0.0    | 0.0    |  |  |  |  |  |
| P104 | 3.0               | 2.3    | 3.0    | 1.0   | 77.0   | 1.0    | 0.0      | 0.0    | 0.0    |  |  |  |  |  |
| P105 | 3.2               | 2.3    | 3.2    | 0.9   | 77.9   | 0.9    | 0.0      | 0.0    | 0.0    |  |  |  |  |  |

間ジョイント部の損傷が避けられないのに対し て、Case3(ダンパー有り)では Case1(現況)と同程 度で1.0mm 未満と小さい。また、表7中の最大反 力は、いずれの橋脚も表4に前述したダンパー摩 擦荷重 F<sub>dp</sub>を下回っている。以上から、摩擦ダン パーが L1 地震動に対して固定部材として機能す ることが確認された。

# 3.5 L2 地震動時の解析結果

# (a) 最大応答曲率

L2 地震動(I-III-3、II-III-3)の解析結果として、各 橋脚の最大応答曲率分布を図8および図9に示す。 図中には、比較のため降伏曲率 φy も破線で示し ている。まず、タイプ I 地震動(図 8)の場合、 Case1(現況)および Case2(ダンパー無し)では全て の橋脚で基部のみ降伏し、降伏曲率を大幅に上回 っているのに対し、Case3(ダンパー有り)では全て 弾性域に留まっている。また、タイプ II 地震動(図 9)の場合、全解析 Case の全ての橋脚で基部のみ降 伏しているものの、Case3 の応答曲率は、Case1 と Case2 に比べて小さい。

図8および図9より、橋脚毎の最大応答曲率に 大きな差異は見られない。そこで、代表例として P103橋脚柱基部の最大応答曲率および塑性率一 覧を表8に、橋脚柱基部の履歴曲線(M- φ関係)



表8 橋脚柱基部の応答曲率及び塑性率一覧(P103)

| 解析Case        |            | 降伏                   | 許容                     |                      |                                                                                  |                      |                           |  |
|---------------|------------|----------------------|------------------------|----------------------|----------------------------------------------------------------------------------|----------------------|---------------------------|--|
|               |            | 曲率                   | 曲率                     | タイプ                  | I (I-III-3)                                                                      | タイプII (II-III-3)     |                           |  |
|               |            | $\phi_{y}$           | $\phi_y \qquad \phi_a$ |                      | 曲率 $\phi$ 塑性率 $\mu$                                                              |                      | 塑性率µ                      |  |
|               |            | $1/m \times 10^{-3}$ | $1/m \times 10^{-3}$   | 1/m×10 <sup>-3</sup> | <b>\$\$</b> \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 1/m×10 <sup>-3</sup> | <b>φ</b> ⁄ φ <sub>y</sub> |  |
| Case1         | 現況         |                      |                        | 9.30                 | 7.3                                                                              | 12.69                | 9.9                       |  |
| Case2         | ダンパー<br>無し | 1.28                 | 11.57                  | 7.02                 | 5.5                                                                              | 7.02                 | 5.5                       |  |
| Case3         | ダンパー<br>有り |                      | 5.78                   | 1.21                 | 1.0                                                                              | 4.24                 | 3.3                       |  |
| Case3 / Case1 |            | -                    | -                      | 0.                   | 13                                                                               | 0.33                 |                           |  |





を図 10 に示す。ここで、Case1 および Case2 の 許容曲率 ø a は、耐震性能 2(地震による損傷が限 定的なものに留まり、橋としての機能の回復が速 やかに行い得る性能)の照査に準拠し算出した %。 なお、タイプⅠの許容曲率の値は、タイプⅡの許 容曲率と同じ値を用いた 10)。また、Case3(ダンパ ー有り)は免震橋の設計に合わせて、橋脚ではなく 支承部の摩擦ダンパーによって確実にエネルギ 一吸収が行われるように、許容塑性率を算定する 時の安全率は Case1 および Case2 の 2 倍とした 6)11)。図 10 および表 8 より、まず、Case1(現況) お よび Case2(ダンパー無し)では、タイプ I、タイプ II 地震動ともに橋脚柱基部が大きく塑性化(塑性 率 µ=7~10 程度)している。一方、Case3(ダンパ ー有り)では、基部曲率が大幅に低減され、タイプ I 地震動では弾性域に留まっている。さらにタイ プII 地震動においても、Case1(現況)に比べて基 部の曲率が60%以上低減されており、かつ免震橋 の許容曲率を下回っている。このように、本研究 で設定した諸条件下における限られた解析結果 ではあるが、摩擦ダンパーを設置することで L2 地震動に対して下部構造の応答曲率を大幅に低 減できることが確認された。

## (b) 支承変位

各橋脚の最大応答支承変位および支承部に生 じる残留変位を表9に示す。また、代表例として P103橋脚の支承変位の時刻歴波形を図11に示す。 表中の許容支承変位(250mm)は、支承ゴム総厚の 200%とした。まず、摩擦ダンパー設置前の Case2(ダンパー無し)では、最大支承変位が 320mm 程度と大きく、許容支承変位を上回って いる。一方、摩擦ダンパー設置後の Case3(ダンパ ー有り)では、Case2 に比べて最大支承変位が大 幅に低減され、許容変位以内に留まっている。な お、Case3の残留変位はタイプ I(I-III-3)地震動で 最大 13mm、タイプ II(II-III-3)地震動で最大 36mm と十分小さかった。

## (c) 摩擦荷重と最大応答値の関係

本項では、Case3 におけるダンパー剛性 K<sub>dp</sub> 一 定のまま、各橋脚一様にダンパー摩擦荷重を 0.1F<sub>dp</sub>から 2.8F<sub>dp</sub>(P103:0.36MN~10.08MN)ま で変化させて解析を行った結果について検討す る。橋脚毎の応答曲率に大差がなかったため、以 下では代表例として P103 橋脚の結果について示 す。ダンパー摩擦荷重と最大応答値の関係を図 12 および図 13 に示す。図中には、ダンパー滑動時

|              | 計点   | P102     |          |          | P103     |          |          | P104     |          |          |          | P105     |          |          |          |          |          |
|--------------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|              | 計谷   | I-II     | II-3     | II-I     | II-3     | I-II     | I-3      | II-I     | II-3     | I-II     | II-3     | II-I     | II-3     | I-II     | I-3      | II-I     | II-3     |
| 解析Case       | 変位   | 最大<br>変位 | 残留<br>変位 |
|              | m    | m        | m        | m        | m        | m        | m        | m        | m        | m        | m        | m        | m        | m        | m        | m        | m        |
| Casel 現況     | -    | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Case2 ダンパー無し | 0.25 | 0.30     | 0        | 0.32     | 0        | 0.31     | 0        | 0.32     | 0        | 0.28     | 0        | 0.29     | 0        | 0.31     | 0        | 0.32     | 0        |
| Case3 ダンパー有り | 0.25 | 0.16     | 0.013    | 0.21     | 0.036    | 0.17     | 0.004    | 0.21     | 0.035    | 0.16     | 0.001    | 0.21     | 0.032    | 0.16     | 0.009    | 0.21     | 0.035    |

表9 最大支承変位および残留変位一覧(Ⅰ-Ⅲ-3、Ⅱ-Ⅲ-3)



図11 支承変位の時刻歴波形 (P103)

震度 k を第二横軸で示している。なお、式(1)の条 件により P103 で設定できる k の範囲は、0.30 以 上 0.41 未満である。図 12 および図 13 より、タ イプ I(I-III-3)とタイプ II (II-III-3)地震動ともに、 最大支承変位は Fdpの増大に伴って右下がりに減 少するのに対して、基部の最大曲率は緩やかな下 に凸の形状となっている。このとき Case3 のダン パー摩擦荷重(1.0 Fdp:3.6MN)は凸形状の中央付 近に位置しており、概ね適切な値に設定されてい たといえる。下部構造の応答値を最小とする Fdp の最適値が存在することは、単柱橋脚 1 本を対象 とした既往の研究 2)、12)で実験的および解析的 に示されており、3 径間 4 橋脚の連続橋の橋軸直 角方向を対象とした本解析でも同様の結果であ った。

# 5. まとめ

以上、本論文では、既設橋梁の支承部に「摩擦 ダンパー」を橋軸直角方向に設置する耐震補強工 法の概要について示した後、摩擦ダンパーを用い



た制震化の効果を確認するため、実橋梁を対象と

した立体モデルによる時刻歴応答解析を実施した。 限られた諸条件下における解析結果ではあるが、

得られた結果を以下に示す。

- 本工法は、摩擦ダンパーの完全剛塑性の履歴特 性を活かし、L1 地震動に対しては固定支承条 件を満たし、L2 地震動に対しては摩擦ダンパ ーが滑動し、ダンパー摩擦荷重を上限として上 部構造の慣性力を頭打ちにし、地震エネルギー を吸収することで下部構造の応答低減を図る ことを意図した。
- 2) L1 地震動の解析の結果、摩擦ダンパーが滑動せ ず支承変位を拘束し、固定部材として機能した。
- 3) L2 地震動の解析の結果、摩擦ダンパーを設置 (Case3)することで現況(Case1)に対して基部 の最大応答曲率が 60%以上低減し、下部構造の 応答を大幅に低減できた。
- 4) L2 地震動での解析の結果、摩擦ダンパーを設置
   後(Case3)の残留変位は最大で 35mm 程度と+
   分小さかった。

# 【謝辞】

本研究は、首都高速道路(株)と青木あすなろ建設 (株)の共同研究「既設橋梁の耐震性向上技術に関す る研究」の研究成果であり、文献 1)で既発表の内 容の一部を再編したものです。本研究を進めるに あたり、首都高速道路 技術部 技術推進課 課長(当 時)の蔵治賢太郎氏をはじめ、関係各位には多大な るご尽力を賜りました。ここに記して深謝を表し ます。

## 【参考文献】

 1) 波田雅也,蔵治賢太郎,右高裕二,牛島 栄:橋梁の耐震補強に用いるダイス・ロッド式摩擦ダンパーの開発,土木学会論文集 A1(構造・地震工学), Vol.75, No.2, pp.95-110, 2019
 2) 波田雅也,和田 新,右高裕二,牛島 栄:ダイ ス・ロッド式摩擦ダンパーを用いた橋梁模型の振 動台実験,コンクリート工学年次論文集, Vol.39, No.2, pp.859-864, 2017.7

大西博之,北嶋圭二,中西三和,安達洋:既存
 RC 造建物の制震補強用摩擦ダンパーに関する研究,コンクリート工学年次論文報告集,Vol.21, No.1,
 pp.385-390, 1999

4) 日本免震構造協会:パッシブ制振構造設計・施 エマニュアル, 2013.11

5) 日本道路協会:道路橋示方書・同解説 V 耐震 設計編, 1996.12

6) 日本道路協会:道路橋示方書・同解説 V 耐震 設計編, 2002.3

7)日本道路協会:道路橋示方書・同解説 V 耐震設計編,2012.3

8) 海洋架橋・橋梁調査会: 既設橋梁の耐震補強工 法事例集, 2005.4

9) 宮本宏一,松田泰治,宇野裕惠,藤本匡哉:道路橋の耐震補強における製震ダンパーの有効活用に関する研究,土木学会論文集A1(構造・地震工学),Vol.69,No.4,pp.I\_592-I\_600,2013.
10) 国土技術政策総合研究所,土木研究所:既設橋の耐震補強設計に関する技術資料,2014.11
11) 土木研究センター:道路橋の免震・制震設計法

マニュアル(案), 2011.12

12) 竹ノ内勇,塩畑英俊,宇野裕惠,横川英彰:
橋脚の地震時保有水平耐力に着目した摩擦履歴型
ダンパーの挙動,土木学会第64回年次学術講演会
概要集,I-389, pp.777-778, 2009